Primitive normal matrices and covering numbers of nite groups
نویسندگان
چکیده
A primitive matrix is a square matrix M with nonnegative real entries such that the entries of M are all positive for some positive integer s. The smallest such s is called the primitivity index of M . Primitive matrices of normal type (namely: MM and MM have the same zero entries) occur naturally in studying the so called conjugacy-class covering numberand character covering numberof a nite group. We show that if M is a primitive n n matrix of normal type with minimal polynomial of degree m, then the primitivity index of M is at most n 2 + 1 (m 1). This bound is then applied to improve known bounds for the various covering numbers of nite groups.
منابع مشابه
On the Graphs Related to Green Relations of Finite Semigroups
In this paper we develop an analog of the notion of the con- jugacy graph of nite groups for the nite semigroups by considering the Green relations of a nite semigroup. More precisely, by de ning the new graphs $Gamma_{L}(S)$, $Gamma_{H}(S)$, $Gamma_{J}(S)$ and $Gamma_{D}(S)$ (we name them the Green graphs) related to the Green relations L R J H and D of a nite semigroup S , we first atte...
متن کاملAlgebras with Positive Bases, Commutators and Covering Numbers
We describe how a general setup called "Algebras with positive bases" can be used for a concurrent study of conjugacy-class covering numbers and character covering numbers in nite groups. This approach yields improvements on the known bounds of the covering numbers.
متن کاملALGEBRAS WITH CYCLE-FINITE STRONGLY SIMPLY CONNECTED GALOIS COVERINGS
Let $A$ be a nite dimensional $k-$algebra and $R$ be a locally bounded category such that $R rightarrow R/G = A$ is a Galois covering dened by the action of a torsion-free group of automorphisms of $R$. Following [30], we provide criteria on the convex subcategories of a strongly simply connected category R in order to be a cycle- nite category and describe the module category of $A$. We p...
متن کاملOn the non-split extension group $2^{6}{^{cdot}}Sp(6,2)$
In this paper we first construct the non-split extension $overline{G}= 2^{6} {^{cdot}}Sp(6,2)$ as a permutation group acting on 128 points. We then determine the conjugacy classes using the coset analysis technique, inertia factor groups and Fischer matrices, which are required for the computations of the character table of $overline{G}$ by means of Clifford-Fischer Theory. There are two inerti...
متن کاملAlgorithms for polycyclic-by-finite matrix groups
Let K be a number eld. We present several algorithms for working with polycyclic-by-nite subgroups of GL(n; K). Let G be a subgroup of GL(n; K) given by a nite generatingset of matrices. We describe an algorithm for deciding whether or not G is polycyclic-by-nite. For polycyclic-by-nite G, we describe an algorithm for deciding whether or not a given matrix is an element of G. We also describe a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004